Research .Iournal

# OBSERVATION ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION WITH THREE UNKNOWNS 

$$
13 x^{2}+3 y^{2}=640 z^{2}
$$

B.LOGANAYAKI ${ }^{1}$, S. MALLIKA ${ }^{\mathbf{2}}$

${ }^{1}$ M.Phil Research Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India. ${ }^{2}$ S. MALLIKA, M.Phil Research Scholar, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India.


#### Abstract

The ternary quadratic equation given by is considered and searched for its many different integer solution. Seven different choices of integer solution of the above equations are presented. A few interesting relations between the solutions and special polynomial numbers are presented.


KEYWORDS: Ternary Quadratic, Integer Solutions
Notation:

$$
\begin{aligned}
t_{m, n} & =n\left[1+\frac{(n-1)(m-2)}{2}\right] \\
P R_{n} & =n(n+1) \\
G_{n} & =2 n-1
\end{aligned}
$$

## INTRODUCTION

The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In particular , one may refer [4-12] for quadratic equations with three unknowns. This communication concerns with yet another interesting equation representing homogeneous equation with three unknowns for determining its infinitely many non-zero integral points. Also,few interesting relations among the solutions are presented.

## METHOD OF ANALYSIS

The Quadratic Diophantine equation with three unknowns to be solved is given by,

$$
\begin{equation*}
13 x^{2}+3 y^{2}=640 z^{2} \tag{1}
\end{equation*}
$$

Consider the linear transformation

$$
\left.\begin{array}{l}
x=X-3 T  \tag{2}\\
y=X+13 T
\end{array}\right\}
$$

Substituting (2) in (1) we get,

$$
\begin{equation*}
X^{2}+39 T^{2}=40 Z^{2} \tag{3}
\end{equation*}
$$

Assume $z=a^{2}+39 b^{2}$
Write 40 as,

$$
\begin{equation*}
40=(1+i \sqrt{39})(1-i \sqrt{39}) \tag{4}
\end{equation*}
$$

Substituting (4),(5) in (3) and employing the method of factorization, we get
$(X+i \sqrt{39} T)(X-i \sqrt{39} T)=(1+i \sqrt{39})(1-i \sqrt{39})(a+i \sqrt{39} b)^{2}(a-i \sqrt{39} b)^{2}$
Equating the positive factor,
$(x+i \sqrt{39} T)=(1+i \sqrt{39})(a+i b \sqrt{39} b)^{2}$

$$
(X+i \sqrt{39} T)=\left(a^{2}-78 a b-39 b^{2}\right)+i \sqrt{39}\left(a^{2}+2 a b-39 b^{2}\right)
$$

Equating real and imaginary parts,

$$
X=a^{2}-78 a b-39 b^{2}
$$

$T=a^{2}+2 a b-39 b^{2}$
Substituting in (2)

$$
\begin{aligned}
& x(a, b)=-2 a^{2}+78 b^{2}-84 a b \\
& y(a, b)=14 a^{2}-546 b^{2}-52 a b
\end{aligned}
$$

The non-zero distinct integer solution of (1) is obtained as

$$
\begin{aligned}
& x(a, b)=-2 a^{2}+78 b^{2}-84 a b \\
& y(a, b)=14 a^{2}-546 b^{2}-52 a b \\
& z(a, b)=a^{2}+39 b^{2}
\end{aligned}
$$

## PROPERTIES:

- $x(a, 1)+y(a, 1)-148 t_{4, a}+136 P_{r a} \equiv \mathrm{O}(\bmod 2)$
- $x(a, 1)+z(a, 1)-83 t_{4, a}-84 P_{r a} \equiv 0(\bmod 3)$
- $z(a, 1)+y(a, 1)-67 t_{4, a}-52 P_{r a}-50=0$
- $y(a, 1)-14 z(a, 1) \equiv \mathrm{O}(\bmod 52)$
$\bullet 7 x(a, 1)+y(a, 1)+G_{320} a+1=0$


## PATTERN:2

' 40 ' can also be written as

$$
\begin{equation*}
40=\frac{(11+i \sqrt{39})((11-i \sqrt{39})}{2^{2}} \tag{6}
\end{equation*}
$$

Substituting (4) ,(5) \&(6) in (3) and employing the method of factorization, we get

$$
(x+i \sqrt{39} T)(x-i \sqrt{39} T)=\frac{(11+i \sqrt{39})(11-i \sqrt{39})(a+i \sqrt{39 b})^{2}(a-i \sqrt{39} b)^{2}}{2^{2}}
$$

Equating the positive factor
$(x+i \sqrt{39} T)=\frac{(11+i \sqrt{39})(a+i \sqrt{39} b)^{2}}{2}$
$(x+i \sqrt{39} T)=\left(11 a^{2}-78 a b-429 b^{2}\right)+i \sqrt{39}\left(a^{2}+22 a b-39 b^{2}\right)$
Equating real and imaginary parts of the above equation, we get

$$
\begin{aligned}
& X=\frac{1}{2}\left(11 a^{2}-78 a b-429 b^{2}\right) \\
& 7=\frac{1}{2}\left(a^{2}+22 a b-39 b^{2}\right)
\end{aligned}
$$

Substituting in (2)

$$
\begin{gathered}
x=4 a^{2}-72 a b-156 b^{2} \\
y=12 a^{2}+104 a b-468 b^{2}
\end{gathered}
$$

The non- zero distinct integral solution of (1) is obtained as

$$
\begin{aligned}
& x(a, b)=4 a^{2}-72 a b-156 b^{2} \\
& y(a, b)=12 a^{2}+104 a b-468 b^{2} \\
& z(a, b)=a^{2}+39 b^{2}
\end{aligned}
$$

## PROPERTIES:

- $x(a, 1)+y(a, 1)+16 t_{4, a}-32 P_{r a} \equiv \mathrm{O}(\bmod 2)$
- $x(a, 1)+z(a, 1)-85 t_{4, a}+72 P_{r a} \equiv \mathrm{O}(\bmod 3)$
- $y(a, 1)+z(a, 1)+91 t_{4, a}-104 P_{r a}+429=0$
- $x(a, 1)-4 z(a, 1) \equiv 48(\bmod 72)$
- $3 x(a, 1)-y(a, 1)+G_{160 a}+1=0$


## PATTERN: 3

Write the equation (3) as
$X^{2}+39 T^{2}=40 Z^{2} \times 1$
' 1 ' can be written as

$$
\begin{equation*}
1=\frac{(7+3 i \sqrt{39})(7-3 i \sqrt{39})}{20^{2}} \tag{8}
\end{equation*}
$$

Substituting (6), (7) and (8) in (3) and employing the method of factorization, we get
$(x+i \sqrt{39} T)(x-i \sqrt{39} T)=\frac{(7+3 i \sqrt{39})(7-3 i \sqrt{39})}{20^{2}} \frac{(11+i \sqrt{39})(11-i \sqrt{39})}{2^{2}}(a+i \sqrt{39 b})^{2}(a-i \sqrt{39 b})^{2}$
Equating the positive factor

$$
(X+i \sqrt{39} T)=\frac{(7+3 i \sqrt{39})}{20} \frac{(11+i \sqrt{39})}{2}(a+i \sqrt{39} b)^{2}
$$

$(X+i \sqrt{39} T)=\frac{\left(-40 a^{2}+1560 b^{2}+3120 a b\right)+i \sqrt{39}\left(40 a^{2}-1560 b^{2}-80 a b\right)}{40}$
Equating real and imaginary part of the above equation, we get
$X=-a^{2}+39 b^{2}+78 a b$
$T=-a^{2}-39 b^{2}-2 a b$
Substituting in (2)

$$
x=-4 a^{2}+156 b^{2}-72 a b
$$

$$
y=12 a^{2}-468 b^{2}-104 a b
$$

The non-zero distinct integral solution of (1) is obtained as

$$
\begin{aligned}
& x(a, b)=-4 a^{2}+156 b^{2}-72 a b \\
& y(a, b)=12 a^{2}-468 b^{2}-104 a b \\
& z(a, b)=a^{2}+39 b^{2}
\end{aligned}
$$

## PROPERTIES:

- $x(a, 1)+y(a, 1)-184 t_{4, a}+352 P_{r a}+312=0$
- . $x(a, 1)+z(a, 1)-69 t_{4, a}+72 P_{r a} \equiv \mathrm{O}(\bmod 5)$
-. $y(a, 1)+z(a, 1)-117 t_{4, a}+104 P_{r a} \equiv \mathrm{O}(\bmod 3)$
- $3 x(a, 1)+y(a, 1)+G_{160} a+1=0$
- $y(a, 1)-12 z(a, 1) \equiv 0(\bmod 104)$


## PATTERN:4

(3) can also be written as
$(x+Z)(x-Z)=39(Z+T)(Z-T)$

## Case: 1

(9) can be written in the form of ratio as
$\frac{(X+Z)}{13(Z+T)}=\frac{3(Z-T)}{(X-Z)}=\frac{\alpha}{\beta}, \beta \neq 0$
which is equivalent to the system of double equation as

$$
\left.\begin{array}{l}
X \beta-13 \alpha T+Z(\beta-13 \alpha)=0  \tag{10}\\
-X \alpha-3 \beta T+Z(\alpha+3 \beta)=0
\end{array}\right\}
$$

Solving (11) by the method of cross multiplication, we get

$$
\begin{align*}
& X=-13 \alpha^{2}-78 \alpha \beta+3 \beta^{2} \\
& T=-13 \alpha^{2}+2 \alpha \beta+3 \beta^{2} \\
& z=-13 \alpha^{2}-3 \beta^{2} \tag{12}
\end{align*}
$$

Substituting (12) in (2) the non-zero distinct integer solution of (1) are given by
$x(\alpha, \beta)=26 \alpha^{2}-84 \alpha \beta-6 \beta^{2}$

$$
\begin{aligned}
& y(\alpha, \beta)=-182 \alpha^{2}-52 \alpha \beta+42 \beta^{2} \\
& z(\alpha, \beta)=-13 \alpha^{2}-3 \beta^{2}
\end{aligned}
$$

## PROPERTIES:

- $x(\alpha, 1)+y(\alpha, 1)+20 t_{4, a}+136 P_{r a} \equiv 0(\bmod 2)$
- $x(\alpha, 1)+y(\alpha, 1)-97_{4, a}+84 P_{r a} \equiv \mathrm{O}(\bmod 3)$
- $y(\alpha, 1)+z(\alpha, 1)+143_{4, a}+52 P_{r a}-1=0$
- $x(\alpha, 1)+2 z(\alpha, 1) \equiv 7(\bmod 84)$
- $7 x(\alpha, 1)+y(\alpha, 1)+G_{320} \alpha+1=0$

Case: 2
(9) can also be written in the form of the ratio as
$\frac{X+Z}{3(Z+T)}=\frac{13(Z-T)}{(X-Z)}=\frac{\alpha}{\beta}, \beta \neq 0$
which is equivalent to the system of double equation as $X \beta-3 \alpha T+Z(-3 \alpha+\beta)=0$
$-X \alpha-13 \beta T+Z(13 \beta+\alpha)=0\}$
Solving (13) by the method of cross multiplication, we get

$$
\left.\begin{array}{l}
X=-3 \alpha^{2}-78 \alpha \beta+13 \beta^{2} \\
T=-3 \alpha^{2}+2 \alpha \beta+13 \beta^{2} \\
z=-3 \alpha^{2}-13 \beta^{2}
\end{array}\right\}
$$

substituting (14) in (2), the non-zero distinct integral solution of (1) are given by

$$
x(\alpha, \beta)=6 \alpha^{2}-84 \alpha \beta-26 \beta^{2}
$$

$y(\alpha, \beta)=-42 \alpha^{2}-52 \alpha \beta+182 \beta^{2}$
$z(\alpha, \beta)=-3 \alpha^{2}-13 \beta^{2}$

## PROPERTIES:

- $x(\alpha, 1)+y(\alpha, 1)-100 t_{4, a}+136 P_{r, a} \equiv 0(\bmod 2)$
- . $x(\alpha, 1)+z(\alpha, 1)-87 t_{4, a}-84 P_{r, a}+23=0$
- $y(\alpha, 1)+z(\alpha, 1)-7 t_{4, a}+52_{r, a} \equiv \mathrm{O}(\bmod 5)$
- $x(\alpha, 1)+2 z(\alpha, 1) \equiv 52(\bmod 84)$
- $7 x(\alpha, 1)+y(\alpha, 1)+G_{320} \alpha+1=0$

Case: 3
(9) can be written in the form of the ratio as

$$
\frac{X+Z}{39(Z+T)}=\frac{(Z-T)}{X-Z}=\frac{\alpha}{\beta}, \beta \neq 0
$$

which is equivalent to the system of double equation as

$$
\left.\begin{array}{l}
X \beta-39 \alpha T+Z(-39 \alpha+\beta)=0 \\
-\alpha X-\beta T+Z(\alpha+\beta)=0
\end{array}\right\}
$$

solving (15) by the method of cross multiplication, we get

$$
\left.\begin{array}{l}
X=-39 \alpha^{2}-78 \alpha \beta+\beta^{2}  \tag{16}\\
T=-39 \alpha^{2}+2 \alpha \beta+\beta^{2} \\
z=-39 \alpha^{2}-\beta^{2}
\end{array}\right\}
$$

substituting (16) in (2), we obtained the non-zero distinct integral solution of (1) are given by

$$
\begin{aligned}
& x(\alpha, \beta)=78 \alpha^{2}-84 \alpha \beta-2 \beta^{2} \\
& y(\alpha, \beta)=-546 \alpha^{2}-52 \alpha \beta+14 \beta^{2} \\
& z(\alpha, \beta)=-39 \alpha^{2}-\beta^{2}
\end{aligned}
$$

## PROPERTIES:

$\bullet x(\alpha, 1)+y(\alpha, 1)+332 t_{4, a}+136 P_{r, a} \equiv \mathrm{O}(\bmod 3)$

- $x(\alpha, 1)+z(\alpha, 1)-123 t_{4, a}+84 P_{r, a} \equiv \mathrm{O}(\bmod 3)$
- $. y(\alpha, 1)+z(\alpha, 1)+533 t_{4, a}+52 P_{r}\left(b_{a}\right)-13=0$
- $y(\alpha, 1)-14 z(\alpha, 1) \equiv 24(\bmod 52)$
- $7 x(\alpha, 1)+y(\alpha, 1)+G_{320} \alpha+1=0$


## Case: 4

(9) can be written in the form of the ratio as

$$
\frac{X+Z}{Z+T}=\frac{39(Z-T)}{X-Z}=\frac{\alpha}{\beta}, \beta \neq 0
$$

which is equivalent to the system of doudles)equation as

$$
\left.\begin{array}{l}
X \beta-\alpha T+Z(-\alpha+\beta)=0  \tag{18}\\
-\alpha X-39 \beta T+Z(\alpha+39 \beta)=0
\end{array}\right\}
$$

Solving (18) by the method of cross multiplication, we get

$$
\left.\begin{array}{l}
X=-\alpha^{2}-78 \alpha \beta+39 \beta^{2}  \tag{19}\\
T=-\alpha^{2}+2 \alpha \beta+39 \beta^{2} \\
z=-\alpha^{2}-39 \beta^{2}
\end{array}\right\}
$$

Substituting (19) in (1), the non-zero distinct integral solution of (1) are given by
$x(\alpha, \beta)=2 \alpha^{2}-84 \alpha \beta-78 \beta^{2}$
$y(\alpha, \beta)=-14 \alpha^{2}-52 \alpha \beta+546 \beta^{2}$
$z(\alpha, \beta)=-\alpha^{2}-39 \beta^{2}$

## PROPERTIES:

$\bullet . x(\alpha, 1)+y(\alpha, 1)-124 t_{4, a}-136 P_{r a} \equiv \mathrm{O}(\bmod 2)$
$-x(\alpha, 1)+z(\alpha, 1)-85 t_{4, a}+84 P_{r a}+117=0$
$-y(\alpha, 1)+z(\alpha, 1)-37 t_{4, a}+52 P_{r a} \equiv \mathbf{O}(\bmod 3)$

- $y(\alpha, 1)-14 z(\alpha, 1) \equiv O(\bmod 52)$
$-7 x(\alpha, 1)-14 z(\alpha, 1)+G_{320 \alpha}+1=0$


## CONCLUSION:

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic diophantine equation representing $13 x^{2}+3 y^{2}=640 z^{2}$ homogenous cone. As the Diophantine equations are rich in variety, one may search for integer solutions to higher degree Diophantine equations with multiple variables along with suitable properties.

## REFERENCES

1. R. D. Carmicheal, " The Theory of Number and Diophantine Analysis", Dover publication, New York, 1950.
2. L. E. Dickson, " History of Theory of Numbers ",Vol.II, Chelsea Publishing Co, New York , 1952.
3. L.J. Mordell, " Diophantine Equations", Academic press, London, 1969.
4. Dr.S. Mallika, On the homogenous Ternary Quadratic Diophantine equation $6 x^{2}+7 y^{2}=559 z^{2} \quad$ International Journal of Mathematics Trends and Techonology, Volume 65 , issue 7, July 2019, page 206-217.
5. Dr.S. Mallika, Dr. V. Praba Observation on the homogenous Ternary Quadratic Diophantine equation $25 x^{2}-20 x y+10 y^{2}=7 z^{2}$ Journal of Interdisciplinary Cycle of Research, Volume 12, issue 4, April 2020, page 1301-1308.
6. Dr.S. Mallika, T.Aarthi, On the homogeneous Ternary Quadratic Diophantine equation $9 x^{2}-6 x y+2 y^{2}=14 z^{2}$ (IJRAR) International Journal of Research and Analytical Review, Volume 7, issue 1,March 2020, page 937-945.
7. D.Hema, Dr.S. Mallika, On the Ternary Quadratic Diophantine equation $5 y^{2}=3 x^{2}+2 z^{2}$ Journal of Mathematics and Informatics, Volume 10,2017, Page 157-165
8. Dr.S. Mallika, D.Maheshwari, R. Anbarasi, On the homogeneous Ternary Quadratic Diophantine equation $\quad 16 x^{2}+18 x y+3 y^{2}=11 z^{2} \quad$ Infokara Research Journal, Volume 9, issue 4, April 2020, page 26-31.
9. Dr.S. Mallika, M.Aarthy, On the homogeneous Diophantine equation with three unknowns $7 x^{2}+y^{2}=448 z^{2}$ International Journal of Education and Technology ,Volume 1, Issue 6, March 2021, page 19-29.
10. Dr.S. Mallika, G.Annes joshiba, On the homogeneous Diophantine Equation with three unknowns $x^{2}+10 x y+32 y^{2}=8 z^{2} \quad$ International Journal of Education and Technology, Volume 1, Issue 6, March 2021, page 30-40.
11. Dr.S. Mallika, M.Aarthy, On the homogeneous Quadratic Diophantine equation with three unknowns $\quad 4 x^{2}-12 x y+21 y^{2}=13 z^{2} \quad$ EPRA International Journal of Multidisciplinary Research(IJMR)-Peer Reviewed Journal ,Volume 7, Issue 3, March 2021, page 98-113.
12. Dr.S. Mallika, G.Annes joshiba, On the homogeneous Quadratic Diophantine equation with three nknowns $7 x^{2}+3 y^{2}=220 z^{2} \quad$ EPRA International Journal of Multidisciplinary Research(IJMR)-Peer Reviewed Journal ,Volume 7, Issue 3, March 2021, page 81-93.
