

Available online at www.starresearchjournal.com (Star International Journal)

MATHEMATICS

ISSN: 2321-676X

OBSERVATION ON THE TERNARY QUADRATIC DIOPHANTINE EQUATION WITH THREE UNKNOWNS

$$13x^2 + 3y^2 = 640z^2$$

B.LOGANAYAKI¹, S. MALLIKA²

¹M.Phil Research Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India.
²S. MALLIKA, M.Phil Research Scholar, Shrimati Indira Gandhi College, Trichy, Tamil Nadu, India.

ABSTRACT

The ternary quadratic equation given by is considered and searched for its many different integer solution. Seven different choices of integer solution of the above equations are presented. A few interesting relations between the solutions and special polynomial numbers are presented.

KEYWORDS: Ternary Quadratic, Integer Solutions **Notation:**

$$t_{m,n} = n \left[1 + \frac{(n-1)(m-2)}{2} \right]$$

$$PR_n = n(n+1)$$

$$G_n = 2n-1$$

INTRODUCTION

The Diophantine equations offer an unlimited field for research due to their variety [1-3]. In particular , one may refer [4-12] for quadratic equations with three unknowns. This communication concerns with yet another interesting equation representing homogeneous equation with three unknowns for determining its infinitely many non-zero integral points. Also,few interesting relations among the solutions are presented.

METHOD OF ANALYSIS

The Quadratic Diophantine equation with three unknowns to be solved is given by,

$$13x^2 + 3y^2 = 640z^2 \tag{1}$$

Consider the linear transformation

$$\begin{aligned}
x &= X - 3T \\
y &= X + 13T
\end{aligned} (2)$$

Substituting (2) in (1) we get,

$$X^2 + 39T^2 = 40Z^2 \tag{3}$$

Assume
$$z = a^2 + 39b^2 \tag{4}$$

Write 40 as,

$$40 = (1 + i\sqrt{39})(1 - i\sqrt{39}) \tag{5}$$

Substituting (4),(5) in (3) and employing the method of factorization, we get

$$(X + i\sqrt{39}T)(X - i\sqrt{39}T) = (1 + i\sqrt{39})(1 - i\sqrt{39})(a + i\sqrt{39}b)^2(a - i\sqrt{39}b)^2$$

Equating the positive factor,

$$(X + i\sqrt{39}T) = (1 + i\sqrt{39})(a + ib\sqrt{39}b)^2$$

$$(X + i\sqrt{39}T) = (a^2 - 78ab - 39b^2) + i\sqrt{39}(a^2 + 2ab - 39b^2)$$

Equating real and imaginary parts,

$$X = a^2 - 78ab - 39b^2$$

$$T = a^2 + 2ab - 39b^2$$

Substituting in (2)

$$x(a,b) = -2a^2 + 78b^2 - 84ab$$

$$y(a,b) = 14a^2 - 546b^2 - 52ab$$

The non-zero distinct integer solution of (1) is obtained

$$x(a,b) = -2a^2 + 78b^2 - 84ab$$

$$y(a,b) = 14a^2 - 546b^2 - 52ab$$

$$z(a,b) = a^2 + 39b^2$$

PROPERTIES:

$$\bullet .x(a,1) + y(a,1) - 148t_{4,a} + 136P_{ra} \equiv 0 \pmod{2}$$

•
$$.x(a,1) + z(a,1) - 83t_{4,a} - 84P_{ra} \equiv 0 \pmod{3}$$

$$\bullet z(a,1) + y(a,1) - 67t_{4a} - 52P_{ra} - 50 = 0$$

•
$$y(a,1)-14z(a,1) \equiv 0 \pmod{52}$$

$$\bullet$$
 7 $x(a,1) + y(a,1) + G_{320a} + 1 = 0$

PATTERN:2

'40' can also be written as

$$40 = \frac{\left(11 + i\sqrt{39}\right)\left(11 - i\sqrt{39}\right)}{2^2} \tag{6}$$

Substituting (4),(5) &(6) in (3) and employing the method of factorization, we get

$$(X + i\sqrt{39}T)(X - i\sqrt{39}T) = \frac{(11 + i\sqrt{39})(11 - i\sqrt{39})(a + i\sqrt{39}b)^{2}(a - i\sqrt{39}b)^{2}}{2^{2}}$$

Equating the positive factor

$$(X + i\sqrt{39}T) = \frac{(11 + i\sqrt{39})(a + i\sqrt{39}b)^2}{2}$$

$$(X + i\sqrt{39}T) = (11a^2 - 78ab - 429b^2) + i\sqrt{39}(a^2 + 22ab - 39b^2)$$
Equating real and imaginary parts of the above equation, we get

$$X = \frac{1}{2} \left(11a^2 - 78ab - 429b^2 \right)$$
$$T = \frac{1}{2} \left(a^2 + 22ab - 39b^2 \right)$$

$$x = 4a^2 - 72ab - 156b^2$$

$$y = 12a^2 + 104ab - 468b^2$$
The non-zero distinct integral solution

The non-zero distinct integral solution of (1) is obtained

$$x(a,b) = 4a^2 - 72ab - 156b^2$$

$$y(a,b) = 12a^2 + 104ab - 468b^2$$

$$z(a,b) = a^2 + 39b^2$$

PROPERTIES:

- $x(a,1) + y(a,1) + 16t_{4,a} 32P_{ra} \equiv 0 \pmod{2}$
- $x(a,1) + z(a,1) 85t_{4a} + 72P_{ra} \equiv 0 \pmod{3}$
- $y(a,1) + z(a,1) + 91t_{4,a} 104P_{ra} + 429 = 0$
- $x(a,1) 4z(a,1) \equiv 48 \pmod{72}$
- $3x(a,1) y(a,1) + G_{160a} + 1 = 0$

PATTERN: 3

Write the equation (3) as

$$X^2 + 39T^2 = 40Z^2 \times 1 \tag{7}$$

'1' can be written as

$$1 = \frac{\left(7 + 3i\sqrt{39}\right)\left(7 - 3i\sqrt{39}\right)}{20^2} \quad (8)$$

Substituting (6), (7) and (8) in (3) and employing the method of factorization, we get

$$(x + i\sqrt{39}T)(x - i\sqrt{39}T) = \frac{(7 + 3i\sqrt{39})(7 - 3i\sqrt{39})(11 + i\sqrt{39})(11 - i\sqrt{39})}{20^2}(a + i\sqrt{39}b)^2(a - i\sqrt{39}b)^2$$
 Equating the positive factor

$$(X + i\sqrt{39}T) = \frac{(7 + 3i\sqrt{39})(11 + i\sqrt{39})}{20}(a + i\sqrt{39}b)^{2}$$

$$\left(X + i\sqrt{39}T\right) = \frac{\left(-40a^2 + 1560b^2 + 3120ab\right) + i\sqrt{39}\left(40a^2 - 1560b^2 - 80ab\right)}{40}$$

ISSN: 2321-676X

Equating real and imaginary part of the above equation, we get

$$X = -a^2 + 39b^2 + 78ab$$

$$T = -a^2 - 39b^2 - 2ab$$

Substituting in (2)

$$x = -4a^2 + 156b^2 - 72ab$$

$$y = 12a^2 - 468b^2 - 104ab$$

The non-zero distinct integral solution of (1) is obtained

$$x(a,b) = -4a^2 + 156b^2 - 72ab$$

$$y(a,b) = 12a^2 - 468b^2 - 104ab$$

$$z(a,b) = a^2 + 39b^2$$

PROPERTIES:

- $x(a,1) + y(a,1) 184t_{4,a} + 352P_{ra} + 312 = 0$
- $.x(a,1) + z(a,1) 69t_{4,a} + 72P_{ra} \equiv 0 \pmod{5}$
- $y(a,1) + z(a,1) 117t_{4,a} + 104P_{ra} \equiv 0 \pmod{3}$
- $3x(a,1) + y(a,1) + G_{160a} + 1 = 0$
- $y(a,1)-12z(a,1) \equiv 0 \pmod{104}$

PATTERN:4

(3) can also be written as

$$(X+Z)(X-Z)=39(Z+T)(Z-T)$$
 (9)

Case: 1

(9) can be written in the form of ratio as
$$\frac{(X+Z)}{13(Z+T)} = \frac{3(Z-T)}{(X-Z)} = \frac{\alpha}{\beta}, \beta \neq 0$$
(10)

which is equivalent to the system of double equation as

$$X\beta - 13\alpha T + Z(\beta - 13\alpha) = 0$$

$$-X\alpha - 3\beta T + Z(\alpha + 3\beta) = 0$$
(11)

Solving (11) by the method of cross multiplication, we

$$X = -13\alpha^{2} - 78\alpha\beta + 3\beta^{2}$$

$$T = -13\alpha^{2} + 2\alpha\beta + 3\beta^{2}$$

$$z = -13\alpha^{2} - 3\beta^{2}$$
(12)

Substituting (12) in (2) the non-zero distinct integer solution of (1) are given by

$$x(\alpha, \beta) = 26\alpha^2 - 84\alpha\beta - 6\beta^2$$

$$y(\alpha, \beta) = -182\alpha^2 - 52\alpha\beta + 42\beta^2$$

$$z(\alpha, \beta) = -13\alpha^2 - 3\beta^2$$

PROPERTIES:

- $x(\alpha,1) + y(\alpha,1) + 20t_{4,a} + 136P_{ra} \equiv 0 \pmod{2}$
- $x(\alpha,1) + y(\alpha,1) 97_{4,a} + 84P_{ra} \equiv 0 \pmod{3}$
- $y(\alpha,1) + z(\alpha,1) + 143_{4,a} + 52P_{ra} 1 = 0$
- $\bullet x(\alpha,1) + 2z(\alpha,1) \equiv 7 \pmod{84}$
- $7x(\alpha,1) + y(\alpha,1) + G_{320\alpha} + 1 = 0$

Case: 2

(9) can also be written in the form of the ratio as

$$\frac{X+Z}{3(Z+T)} = \frac{13(Z-T)}{(X-Z)} = \frac{\alpha}{\beta}, \beta \neq 0$$

which is equivalent to the system of double equation as

$$X\beta - 3\alpha T + Z(-3\alpha + \beta) = 0$$
$$-X\alpha - 13\beta T + Z(13\beta + \alpha) = 0$$

Solving (13) by the method of cross multiplication, we get

$$X = -3\alpha^{2} - 78\alpha\beta + 13\beta^{2}$$

$$T = -3\alpha^{2} + 2\alpha\beta + 13\beta^{2}$$

$$z = -3\alpha^{2} - 13\beta^{2}$$

substituting (14) in (2), the non-zero distinct integral solution of (1) are given by

$$x(\alpha, \beta) = 6\alpha^2 - 84\alpha\beta - 26\beta^2$$

$$y(\alpha, \beta) = -42\alpha^2 - 52\alpha\beta + 182\beta^2$$

$$z(\alpha, \beta) = -3\alpha^2 - 13\beta^2$$

PROPERTIES:

- $x(\alpha,1) + y(\alpha,1) 100t_{4,a} + 136P_{r,a} \equiv 0 \pmod{2}$
- $.x(\alpha,1) + z(\alpha,1) 87t_{4\alpha} 84P_{r\alpha} + 23 = 0$
- $y(\alpha,1) + z(\alpha,1) 7t_{4,a} + 52_{r,a} \equiv 0 \pmod{5}$
- $x(\alpha,1) + 2z(\alpha,1) \equiv 52 \pmod{84}$
- $7x(\alpha,1) + y(\alpha,1) + G_{320\alpha} + 1 = 0$

Case: 3

(9) can be written in the form of the ratio as

$$\frac{X+Z}{39(Z+T)} = \frac{(Z-T)}{X-Z} = \frac{\alpha}{\beta}, \beta \neq 0$$

which is equivalent to the system of double equation as

$$X\beta - 39\alpha T + Z(-39\alpha + \beta) = 0$$
$$-\alpha X - \beta T + Z(\alpha + \beta) = 0$$

solving (15) by the method of cross multiplication, we get

$$X = -39\alpha^{2} - 78\alpha\beta + \beta^{2}$$

$$T = -39\alpha^{2} + 2\alpha\beta + \beta^{2}$$

$$z = -39\alpha^{2} - \beta^{2}$$
(16)

substituting (16) in (2), we obtained the non-zero distinct integral solution of (1) are given by

$$x(\alpha, \beta) = 78\alpha^2 - 84\alpha\beta - 2\beta^2$$

$$y(\alpha, \beta) = -546\alpha^2 - 52\alpha\beta + 14\beta^2$$

$$z(\alpha, \beta) = -39\alpha^2 - \beta^2$$

PROPERTIES:

- $x(\alpha,1) + y(\alpha,1) + 332t_{4,a} + 136P_{r,a} \equiv 0 \pmod{3}$
- $x(\alpha,1) + z(\alpha,1) 123t_{4,a} + 84P_{r,a} \equiv 0 \pmod{3}$
- $y(\alpha,1) + z(\alpha,1) + 533t_{4,a} + 52P_r(13) 13 = 0$
- $y(\alpha,1) 14z(\alpha,1) \equiv 24 \pmod{52}$
- $7x(\alpha,1) + y(\alpha,1) + G_{320\alpha} + 1 = 0$

Case:4

(9) can be written in the form of the ratio as

$$\frac{X+Z}{Z+T} = \frac{39(Z-T)}{X-Z} = \frac{\alpha}{\beta}, \beta \neq 0$$

which is equivalent to the system of double equation as

$$X\beta - \alpha T + Z(-\alpha + \beta) = 0$$

$$-\alpha X - 39\beta T + Z(\alpha + 39\beta) = 0$$
(18)

Solving (18) by the method of cross multiplication, we get

$$X = -\alpha^{2} - 78\alpha\beta + 39\beta^{2}$$

$$T = -\alpha^{2} + 2\alpha\beta + 39\beta^{2}$$

$$z = -\alpha^{2} - 39\beta^{2}$$
(19)

Substituting (19) in (1), the non-zero distinct integral solution of (1) are given by

$$x(\alpha, \beta) = 2\alpha^2 - 84\alpha\beta - 78\beta^2$$

$$y(\alpha, \beta) = -14\alpha^2 - 52\alpha\beta + 546\beta^2$$

$$z(\alpha,\beta) = -\alpha^2 - 39\beta^2$$

(15)

PROPERTIES:

•
$$.x(\alpha,1) + y(\alpha,1) - 124t_{4,a} - 136P_{ra} \equiv 0 \pmod{2}$$

•
$$x(\alpha,1) + z(\alpha,1) - 85t_{4,a} + 84P_{ra} + 117 = 0$$

•
$$y(\alpha,1) + z(\alpha,1) - 37t_{4,a} + 52P_{ra} \equiv 0 \pmod{3}$$

•
$$y(\alpha,1)-14z(\alpha,1)\equiv 0 \pmod{52}$$

•
$$7x(\alpha,1) - 14z(\alpha,1) + G_{320\alpha} + 1 = 0$$

CONCLUSION:

In this paper, an attempt has been made to obtain non-zero distinct integer solutions to the ternary quadratic diophantine equation representing $13x^2 + 3y^2 = 640z^2$ homogenous cone. As the Diophantine equations are rich in variety, one may search for integer solutions to higher degree Diophantine equations with multiple variables along with suitable properties.

REFERENCES

- 1. R. D. Carmicheal, "The Theory of Number and Diophantine Analysis", Dover publication, New York, 1950.
- L. E. Dickson, "History of Theory of Numbers", Vol.II, Chelsea Publishing Co, New York, 1952.
- 3. L.J. Mordell, "Diophantine Equations", Academic press, London, 1969.
- 4. Dr.S. Mallika, On the homogenous Ternary Quadratic Diophantine equation $6x^2 + 7y^2 = 559z^2$ International Journal of Mathematics Trends and Technology,
 - Volume 65, issue 7, July 2019, page 206-217.
- 5. Dr.S. Mallika, Dr. V. Praba Observation on the homogenous Ternary Quadratic Diophantine equation $25x^2 20xy + 10y^2 = 7z^2$ Journal of Interdisciplinary Cycle of Research, Volume 12, issue 4, April 2020, page 1301-1308.

- 6. Dr.S. Mallika, T.Aarthi, On the homogeneous Ternary Quadratic Diophantine equation $9x^2 6xy + 2y^2 = 14z^2$ (IJRAR) International Journal of Research and Analytical Review, Volume 7, issue 1,March 2020, page 937-945.
- 7. D.Hema, Dr.S. Mallika, On the Ternary Quadratic Diophantine equation $5y^2 = 3x^2 + 2z^2$ Journal of Mathematics and Informatics, Volume 10,2017, Page 157-165
- 8. Dr.S. Mallika, D.Maheshwari, R. Anbarasi, On the homogeneous Ternary Quadratic Diophantine equation $16x^2 + 18xy + 3y^2 = 11z^2$ Infokara Research Journal, Volume 9, issue 4, April 2020, page 26-31.
- 9. Dr.S. Mallika, M.Aarthy, On the homogeneous Diophantine equation with three unknowns $7x^2 + y^2 = 448z^2$ International Journal of Education and Technology ,Volume 1, Issue 6, March 2021, page 19-29.
- 10. Dr.S. Mallika, G.Annes joshiba, On the homogeneous Diophantine Equation with three unknowns $x^2 + 10xy + 32y^2 = 8z^2$ International Journal of Education and Technology, Volume 1, Issue 6, March 2021, page 30-40.
- 11. Dr.S. Mallika, M.Aarthy, On the homogeneous Quadratic Diophantine equation with three unknowns $4x^2 12xy + 21y^2 = 13z^2$ EPRA International Journal of Multidisciplinary Research(IJMR)-Peer Reviewed Journal ,Volume 7, Issue 3, March 2021, page 98-113.
- 12. Dr.S. Mallika, G.Annes joshiba, On the homogeneous Quadratic Diophantine equation with three nknowns $7x^2 + 3y^2 = 220z^2$ EPRA International Journal of Multidisciplinary Research(IJMR)-Peer Reviewed Journal ,Volume 7, Issue 3, March 2021, page 81-93.