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ABSTRACT 

We investigated functioning of the Hypothalamic – Pituitary – adrenal (HPA) axis in 12 young people at ultra-high 

risk for developing psychosis, using the combined dexamethasone corticotrophin releasing hormone (DEX/CRH) test.  The 

focus is the frequency spectrum of the Infinite-Allele Markov branching process, namely the proportion having a given 

number of copies at a specified time point. 
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INTRODUCTION 

The diathesis – stress model of schizophrenia 

contents that a combination of factors, including genetic 

liability, abnormal maturation, early exposures, and 

stress combine to affect the abnormal substrate thought 

to underlie schizophrenia [3,10]. In order to further 

elucidate the relationship between stress response and 

the pathophysiology of psychosis, it may be of special 

value to test HPA – axis reactivity during the sub-

threshold stage of illness [9]. 

Consider an Infinite – Allele Markov branching 

process. Our main focus is the frequency spectrum of 

this process, that is, the proportion of allele having a 

given number of copies at a specified time point in [5].  

We derive the variance of the frequency spectrum, which 

is useful for interval estimation and hypothesis testing 

for process parameters.  In addition, we also derive an 

asymptotic expression for convergence rate to the limit. 

Simulations are used to illustrate the results for the birth 

and death process. 

NEUTRAL EVOLUTION AND ITS LIMITING 

MEAN FREQUENCY SPECTRUM 

Definition and Basic Properties : 

A continuous-time Markov branching process 

consisting of individuals with exponential life spans with 

mean    Let us assume that upon death, each individual 

produces a random number of offspring.  As usually 

assumed, the offspring counts are identically distributed 

according to probability generating function (pgf)  , and 

they are independent conditional on the past process.  

The mean  ' of the offspring distribution is  , regardless 

of the allelic type.  We further assume that a newborn 

individual mutates into a new allelic type with 

probability  independently of the previous history of 

theprocess.  Let us denote by   the offspring probability 

generating function in a clone, started by the overall  

 

 

 

ancestor or any of mutants, containing only the like- type 

individuals.  The entire process is a union over all 

individual types of such clones.  The theory of the 

Infinite-Allele Markov Branching process has been 

developed by[1] in the discrete time case and then by  [2] 

in the continuous-time case. 

     Let  be the number of alleles present in   individuals 

at time   and  , where subscript   indicates that the 

process begins with   individuals carrying the same 

allele.  It has been shown that [2] 
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where )1(  ma  is the Malthusian parameter of the 

overall process and )(tqij
 is the probability of observing 

j  individuals )1( j  carrying parental allele at time t  

when starting from i  individuals with the parental allele 

at time .0t Consequently, for the number tK of alleles 

at time t , we have 
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see the limiting mean frequency spectrum, that is, the 

expected proportion of alleles present in j  individuals as 

t , then we see that for the supercritical process 
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such that  > 0 , 
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 If M >1, then the process of the like-type clones is 

supercritical, and as it is known [6], )(10 tq  )(10 q

<1 and )(1 tq j
 0 , ,1j   as .t   Therefore, 
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INFINITE – ALLELE MARKOV BRANCHING 

PROCESS WITH BIRTH AND DEATH 

OFFSPRING DISTRIBUTION: 

 For the Infinite - Allele Markov Branching 

Process with birth and death offspring distribution 

,1,)( 2   ssf  we are able to obtain an 

explicit form for ,jG ;0j therefore, the limiting mean 

frequency spectrum ,j ;1j  can be derived. The 

offspring pgf of the like-type individuals clone in the 

birth and death infinite – Allele Markov Branching 

Process is written as 

,])1([))1(()( 2ssfsh  
    

(6) 

where  ,   and   stand for the death, birth, and 

mutation probabilities for every individual and

.1   Note that under another parameterization 

where the two newborn individuals die, live, and mutate 

independently, this pgf may be formulated differently as 

.])1([)( 2ssh    Under either 

parameterization, ).12(   a  If, as assumed, 

)1(  mM >1, then parameters   and   are 

subject to a constraint 

)1)(1(   > .
2

1
(7) 

     Let us write 
22  A  and 

22 )1(  B  

(note, for the other formulation, 
22 )(  A  and 

).)1( 222  B   The explicit form of 
jG  can be 

written as 

),;2;,1(
))(2(

)2()(1
2

2

2

2

0
B

A

cc
F

c

c

B

A

c
G











 (8) 

),;1;1,1(
))(1(

)())(1(
)1(

1
2

2
2

2

2

B

A

c
j

c
jF

c
j

j
c

B

A

c
G j













,1j  

where ]1)1(2[)( 22  aABac  is the 

Malthusian parameter of the like-type clone and F is the 

Gauss hypergeometric function [7], defined as  
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     For a detailed derivation, see Appendix A. Note that 

the supercritical condition also guarantees that the 

argument of the hypergeometric function remains within 

its region of definiteness. 

     It follows that 
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We see that for fixed ,  increasing  causes an increase 

of .1   This can be intuitively explained by the 

offspring pgf )(sh  of the like-type clone.  From the pgf 

expression ,])1([)( 2ssh    we see that 

the probability of obtaining one like-type individual in 

the offspring is ),1()1(2    which is an 

increasing function of    for a given  , under the 

constraint )1)(1(   > .2
1   Therefore, increasing 

will finally lead to an increase of .1 The effect of    

on   1 when fixing    is not so obvious, but we notice 

that when fixing   very close to 0, as   approaches 

,
2

1  the process is approximately critical binary fission; 

therefore, 1   drops down because of almost sure 

extinction of the process, as seen from the tail behavior 

of the solid . 

 The frequency spectrum can only be observed in 

finite time.  The finite-time mean frequency spectrum can 

be obtained by computing 

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t
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numerically.  For the birth and death process, this 

involves the computation of the incomplete 

hypergeometric function.  The following is a valid 

question in this context.  In order to safely use the 

limiting mean frequency spectrum, how long should the 

process history be?  For the birth and death process with 

parameters 1a ,  25.0 , and 
410 .  We see 

that under this setting, the long-term mean frequency 

spectrum is almost identical to the limiting mean 

frequency spectrum when 28t .   

In general, this result depends strongly on 

parameters ,,a   and  , for example, small   leads 

to longer t .  This provides us with some intuitions 

concerning the sufficientlylarge t  for approximating the 
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limiting mean frequencyspectrum.  The difference 

between the finite-time mean frequency spectrum and the 

limiting mean frequency spectrum as a function of t , for 

large t , ]35,15[t  and for .2,1j  

 Given the observed long-term mean frequency 

spectrum, the parameters    of the Infinite – Allele 

Markov Branching Process, such as  ,  in the birth and 

death process, can be estimated by equating the observed 

long-term mean frequency spectrum obs  from the 

sample to the expected limiting mean frequency 

spectrum 
exp from formula (3) and solving for the 

process parameters.  In the case of the birth and death 

process, we may estimate and  for example by 

solving
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for positive integers ,11 kj  ,22 kj   where 
c

  and 

2

2

B
A  are both functions of   and .  

VARIANCE OF THE FREQUENCY SPECTRUM: 

 Moment estimators based on the mean 

frequency spectrum only give point estimates of the 

process parameters.  In order to quantify the uncertainty 

of point estimates, an interval estimator is needed, which 

requires more information about the distribution of the 

statistic )( jt . First, it can be seen that [2] 
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where ...,........., 21 TT  are the successive split times of 

the process, ),(,0 tI j )(,, tI jkn
 are two indicators, and 

1)(,0 tI j
 if there are j  individuals alive at time t  

carrying the parental allele, and ,1)(,, tI jkn
 for

1, kn  if the k th individual born at time nT nT( < )t  

mutates to a novel allelic type and further produces j  

individuals carrying this allele t  time units later. tN  is 

the number of split times in ],,0( t  and nU  is the 

number of offspring produced at time .nT  Obtaining the 

distribution of )( jt  is not elementary. However, it 

may still be possible to define a confidenceinterval (CI) 

based on the first and second moments of  )( jt . 

 Let   ))(()(, jVarj titi    be the variance 

frequency spectrum; by the law of total variance and 

independence between the indicators in the expression of  

)( jt  . we have, 
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In expression (14), 
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2 is the variance of the offspring distribution, 

regardless of allelic types[4]. This is useful for checking 

model validity and for testing whether two observed 

mean frequency spectra are from the same Infinite – 

Allele Markov Branching Process Model. 

EXAMPLE 

Cortisol was assayed using a previously reported 

procedure [6] and ACTH sent to a commercial laboratory 

for testing.  The small sample size precluded any 

statistical analyses; therefore only qualitative data is 

presented.  Over a two year period from baseline 

assessment, three of the 12 participants developed an 

acute psychotic illness, in each case meeting the DSM- 

IV diagnostic criteria for schizophrenia [1]. For the 

DEX/CRH test, mean cortisol levels were equivalent 

between the groups at baseline and during the early 

stages of the test, although higher mean cortisol levels 

were apparent among participants that did not 

subsequently make the transition to psychosis, peaking at 

60 min (see Fig. 1). 
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Fig(2) 

 

CONCLUSION 

The paper is rigorously defined the Infinite – Allele 

Markov Branching Process and the mean frequency 

spectrum of the Infinite – Allele Markov Branching 

Process.  Thus, we provide explicit expressions for the 

special case of the birth and death process, which is used 

for cortisol response to an experimental psychologic 

stressor in transition and non transition survivors.  12 

participants developed an acute psychotic illness.  

Analyses were conducted to cortisol for factors that 

differed between transition and non transition as in fig 

(1).  At the completion of the process, it concludes that 

from fig (2), the results coincide with the medical 

findings. 
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