FRACTIONS IN AREA MEASUREMENTS

T. SANTHI
Assistant Professor Department of Mathematics, J.K.K.Nataraja College of Arts and Science, Komarapalayam

Abstract

The land measurements that are found mentioned in the inscriptions are not only large extent but the minutest values of area is also found. A mathematical attempt has been done to calculate the areas of such fractions mentioned.

Key words: Kāṇi, arai kāṇi, mundri, kīl mundri, kīl $\mathrm{k} \overline{1} \underline{\underline{l}}$ mundri.etc.,

Introduction: In general the land is measured in terms of kuli, ma and veli. It is interesting to note that many of the inscriptions of Raja Raja Chola mentions some other area measures such as kani,
arai kāṇi, mundri, kīl mundri, kīl kīl mundri. Kāṇi is $1 / 80^{\text {th }}$ of a Vēli, $1 / 40^{\text {th }}$ of a vēli is termed as arai kāṇi, $1 / 320$ of a vēli is mundri, The areas covered by these fractions are being calculated

Area covered by each area measure when different scales are employed
A unit of area is termed as kuli in the inscriptions.
(1* 1) $k o \bar{l}$ square $=1$ kuli
100 kuli $=1 \mathrm{ma}$
$20 m \bar{a}=1$ vèli
400 kulli $=1$ kāni
1 vēli $=5$ kāni
2000 kuli i $=1 v e \bar{l} i$
A vēli becomes a basic unit. Also, ($\frac{1}{320}$) of a vēli is called a mundri.
1/ mundri= killmundri
1/ kīlmundri= kīlkīlmundri
Area is calculated by 12 sān kōl, $18 s \bar{a} n k \bar{o} l$ and 24 sān $k \bar{o} l$ under the assumptions such as one vēli equals 2000 kuli, 100 kuli equals one $m \bar{a}$ etc as stated above.

Area covered when 12sān kōl is used

$$
\begin{aligned}
1 \text { mundri } & =\frac{2000 * 144}{320} \text { sq. } s \bar{a} n . \\
& =900 \text { sq. sān. } \\
\text { Kīl mundri } & =\frac{900}{320} \text { sq. } \cdot \text { ān. } \\
& =2 \text { sq. } s \text { ān. }+\frac{260}{320} \text { sq sān }
\end{aligned}
$$

$$
\begin{aligned}
& =2 \text { sq. sān. }+\frac{260}{320} \text { sq. viral } \\
& =2 \text { sq. sān. }+29 \text { sq. viral }+\frac{80}{320} * 64 \text { sq. nel. } \\
& =2 \text { sq. sān. }+29 \text { sq. viral }+16 \text { sq. nel. } \\
& =(4608+1856+16) \text { sq. nel. } \\
& =6480 \text { sq. } \text { nel. }
\end{aligned}
$$

Kīl Kīl mundri $=\frac{6480}{320}$ sq. nel.

$$
=20 \text { sq. nel }+\frac{80}{320} \text { sq. nel. }
$$

$$
=\left(20 \times 64+\frac{80}{320} \times 64\right) \text { sq.yel. }
$$

$$
=(1280+16) \text { sq. yel }
$$

$$
\text { = } 1296 \text { sq. Yel. }
$$

$K i \underline{l}$ Kill $K \bar{l} \underline{l}$ mundri $=\frac{1296}{320}$ sq. yel.

$$
\begin{aligned}
& =\left(4+\frac{16}{320}\right) \text { sq.yel. } \\
& =(4 \mathrm{X} 64)+\left(\frac{16}{320} \mathrm{X} 64\right) \text { sq. } \text { kadugu } \\
= & (256+3.2) \text { sq. } \text { kadugu } \\
= & 259.2 \text { sq. } \text { Kadugu }
\end{aligned}
$$

Area covered when $16 s \bar{a} n \mathbf{k o ̄} l$ is used

$$
\begin{aligned}
& 1 \text { mundri }=\frac{2000 * 256}{320} \\
&=1600 \text { sq. } \text { sān. } \\
& \begin{aligned}
\text { Kīl mundri } & =\frac{1600}{320} \\
& =5 \text { sq.sān. } \\
& =5^{*} 36 \text { sq. } \text { viral } \\
& =180 \text { sq. } \text { viral }
\end{aligned}
\end{aligned}
$$

Kīl Kīl mundri $=180 / 320$

$$
\begin{aligned}
& =9 / 16 \text { sq. viral. } \\
& =\underline{9 * 64} \text { sq. } \mathrm{nel} . \\
& =36 \text { sq. } \mathrm{nel}
\end{aligned}
$$

$K i \underline{l}$ Kīl $K \underline{l} \underline{l}$ mundri $=36 / 320$ sq. nel.

$$
\begin{aligned}
& =\frac{36 \times 64}{320} \text { sq. yel. } \\
& =7.14 \text { sq yel. } \\
& =7.2 \text { sq. yel. App. } \\
& =7.2 * 64 \text { sq. kadugu. } \\
& =460.8 \text { sq. } \text { kadugu }
\end{aligned}
$$

Area covered when 18sān $\mathbf{k o ̄ l}$ is used

$$
\begin{aligned}
1 \text { mundri } & =\frac{2000 \times 324}{320} \text { sq. sān. } \\
& =2025 \text { sq. sān. } \\
\text { Kīl mundri } & =\frac{2025}{320} \text { sq. san. } \\
& =6 \text { sq. sān. }+\frac{105}{320} \text { sq san } \\
& =6 \text { sq. sān. }+\frac{105}{320} \times 36 \text { sq. viral }
\end{aligned}
$$

$$
\begin{aligned}
& =6 \text { sq. sān. }+11 \text { sq. viral }+\frac{260}{320} \text { X } 64 \text { sq. nel. } \\
& =6 \text { sq. } \text { sān. }+11 \text { sq. viral }+52 \text { sq. nel. } \\
& =(13824+704+52) \text { sq. } n \text { el. } \\
& =14580 \text { sq. nel. }
\end{aligned}
$$

$K \underline{l} \underline{l} K \underline{l} \underline{l}$ mundri $=\frac{14580}{320}$ sq. nel.

$$
\begin{aligned}
& =45 \text { sq.nel }+\frac{180}{320} \text { sq. nel. } \\
= & \left(45 * 64+\frac{180}{320} * 64\right) \text { sq.yel. } \\
= & (2880+36) \text { sq. yel } \\
= & 2916 \text { sq. yel!. }
\end{aligned}
$$

$K \underline{\imath} \underline{l} K \underline{l} \underline{l} K \underline{l} \underline{l}$ mundri $=\frac{2916}{320}$ sq. yel.

$$
\begin{aligned}
& =\left(9+\frac{36}{320}\right) \text { sq.yel. } \\
& =(9 \times 64)+\left(\frac{36}{320} \times 64\right) \text { sq. } \text { kadugu } \\
= & (576+7.2) \text { sq. } k a d u g u \\
= & 259.2 \text { sq. } \text { kaḍugu } \\
= & 583.2 \text { sq. } \text { kadugu. }
\end{aligned}
$$

Area covered when $24 s \bar{a} n \mathbf{k} \overline{\mathbf{o}} \mathrm{l}$ is used

$$
\begin{aligned}
1 \text { mundri } & =\frac{2000 \times 576}{320} \text { sq. sān. } \\
& =3600 \text { sq. sān }
\end{aligned}
$$

Kīl mundri $=\frac{3600}{320}$ sq. san.

$$
\begin{aligned}
& =11 \text { sq. sān. }+\frac{80}{320} \text { sq san } \\
= & 11 \text { sq. } \text { sān} \cdot+\frac{80}{320} \times 36 \text { sq. viral } \\
= & 11 \text { sq. } \text { sān. }+9 \text { sq. viral } \\
= & (396+9) \text { sq. viral. } \\
= & 405 \text { sq. viral }
\end{aligned}
$$

Kīl Kīl m m $n d r i=\frac{405}{320}$ sq. viral.

$$
\begin{aligned}
& =1 \text { sq. viral }+\frac{85}{320} \text { X } 64 \text { sq. nel. } \\
= & (1 \mathrm{X} 64+17) \text { sq. nel. } \\
= & (64+17) \text { sq. } \text { nel } \\
= & 81 \text { sq. nel. }
\end{aligned}
$$

$K \bar{l} \underline{l} K \underline{l} \underline{l} K \underline{l} \underline{l} m u n d r i=\frac{81}{320}$ sq. $n e l$.

$$
\begin{aligned}
& =\left(\frac{81}{320} \text { X } 64\right) \text { sq.yel. } \\
& =(16 \mathrm{sq} \cdot \text { Yel })+\left(\frac{64}{320}\right) \text { sq.yel. } \\
& =(16 \times 64)+\left(\frac{64}{320} \times 64\right) \text { sq. kadugu } \\
& =(1024+12.8) \text { sq. kadugu } \\
& =1036.8 \text { sq. kadugu. }
\end{aligned}
$$

The values are tabulated below.

Area of fractions using various measuring rods

	12 sān $k \bar{o} l$	16 sān $k \bar{o} l$	18 sān $k \bar{o} l$	24 sān $k \bar{o} l$

Mundri	$\begin{aligned} & \hline 900 \\ & \text { sq.sān } \end{aligned}$	1600sq.sān	2025sq.sān	3600sq.sān.
Kīl mundri	$\begin{aligned} & \text { 6480sq. } n \\ & \text { el. } \end{aligned}$	$\begin{aligned} & \text { 180sq. } \text { viral }= \\ & 11520 \quad \text { sq. } \\ & \text { Nel } \end{aligned}$	14580sq.nel	$\begin{aligned} & 405 \quad \text { sq. } \\ & \text { Viral }=25920 \\ & \text { sq. } \text { nel. } \end{aligned}$
Kīl k kil mundri	$\begin{aligned} & 1296 \mathrm{sq} . \\ & \text { yel. } \end{aligned}$	$\begin{aligned} & 36 \text { sq. Nel= } \\ & 2304 \text { sq.yel } \end{aligned}$	2916 sq. yel	81 sq. nel $=$ 5184 sq. yel
	$259.2 \mathrm{sq} .$ Kadugu.	$\begin{array}{lr} \hline 460.8 & \text { sq. } \\ \text { Kadugu. } \end{array}$	$\begin{array}{ll} \hline 583.2 & \text { sq. } \\ \text { Kadugu. } & \\ \hline \end{array}$	$\begin{array}{lr} \hline 1036.8 & \text { sq. } \\ \text { Kadugu. } \end{array}$

From the table we can infer that if length of the rod is doubled then its coresponding area becomes 4times the original area. For example when the length of the rod 12 sān is doubled we get $24 s \bar{a} n$. The area of $12 s \bar{a} n$ rod for mundri that is 900 square $s \bar{a} n$ should be multiplied by 4 to get the area for $24 s \bar{a} n$ as 3600 square sān.

Therefore it is necessary to mention the length of the rod while mentioning the area.
Modern equivalence for the above area
Assuming 1 sān $=21 \mathrm{~cm}$
1 inch $=2.54 \mathrm{~cm}=2$ viral
So, 1viral $=1.27 \mathrm{~cm}$
8 paddy grain $=1$ viral
So, 1 paddy $=1.27 / 8 \mathrm{~cm}$.

$$
=0.15875 \mathrm{~cm} .
$$

8 yel $=1$ nel
1 yel $=.15875 / 8 \mathrm{~cm}$.

$$
=0.01984375 \mathrm{~cm}
$$

8 kadugu $=1$ yel $=0.01984375 \mathrm{~cm}$
1 kadugu $=0.01984375 / 8 \mathrm{~cm}$.

$$
=0.00248046875 \mathrm{~cm}
$$

The following table is meant to show the conversion of area from sān.sq. to cm square.

Area of fractions using various measuring rods (in sq.cm)

	$\begin{aligned} & 12 \text { sān kōl (sq. } \\ & \mathrm{cm}) \end{aligned}$	$\begin{aligned} & 16 \text { sān kōl } \\ & \text { (sq. cm) } \end{aligned}$	$\begin{aligned} & 18 \text { sān kōl } \\ & (\mathrm{sq} . \mathrm{cm}) \end{aligned}$	$\begin{aligned} & 24 \text { sān kōl } \\ & \text { (sq. cm) } \end{aligned}$
Mundri	396900	705600	893025	1587600
Kill mundri	163.306	290.32	367.43878125	653.2245
Kīl mundri kil	0.51033164062	. 90725625	1.1482461914	2.413265625
Kīl kīl kīl mundri	0.00159479843	0.00283517578	0.00358826934	0.0063791455

Figure. 3.15.

The areas for the higher denomination like $m \bar{a}, k \bar{a} n i, v \bar{e} l i$ for various lengths of the rods are calculated and are tabulated below.

Area of fractions using various measuring rods (in $s \bar{a} n \mathrm{sq}$)

	12 sān	16 sān	18 sān	24 sān
Käṇi	3600	6400	8100	14400
Ma	14400	25600	32400	57600
Vēli	288000	512000	648000	1152000

Here also we find that the values for 24 sann is 4 times that of that of 12 s $\bar{a} n$.

Conclusion:

We have calculated the areas of the fractions that are found mentioned in the Tamil inscriptions and we could not know why such a minute areas of land is being measured and what impact it has in the larger economic country like Chola. But the calculations reveals the mathematical knowledge of the Tamils.

References

[1]. Annual reports of South
Indian Epigraphy (1887-1945),
Mysore.
[2]. Annual reports of South
Indian Epigraphy (1946
onwards).
[3]. Epigraphia Indica, (1872-
1971), Archaeological survey
of

India, Vols. I- XXXIX.
[4]. Indian Archaeology - A review published by the Archaeological survey of A.D. 325 to 1700 ,
[5]. South Indian Inscriptions, (1890-1983), Vol. I- XIV, XVII,XIX, XXII- XXVI, Archaeological survey of India.
[6] Karashima Noboru, (1984) South Indian History and Society
studies from inscriptions, A.d. 850-
1800, Oxford University press,
New Delhi.
7]]. Karashima Noboru, (1966)Allur and Isanamangalam: two South

Indian villages of the Chola Times.

