

DETAILED DISCRIPTION ON VELI, KULI AND MA - AREA MEASUREMENTS FROM EPIGRAPHS

T. SANTHI
Assistant Professor Department of Mathematics, J.K.K.Nataraja College of Arts and Science, Komarapalayam.

Abstract

The paper intends to calculate the veli which is an area measurement using different measuring rods that are termed as kol in the inscriptions of Tamil nadu. Here we have also discussed about the number of kuli that constitute a ma in different periods of time.

Key words : Veli, Ma, kani, madakku, kil, taram etc.,

Introduction

Area measure is expressed in terms of several units which gives an idea about the land survey undertaken. The area measure not only gives an idea about the extent of area of land donated but also the land brought under cultivation as well the lands irrigated. While assessing the extent of land, the area measures come to our rescue to solve the boundary disputes. It is possible to know the distortion in the boundary on account of natural calamities like flood, etc.,. The area survey is invariably undertaken under the orders of the king to asses the extent of land that suffered from breeches that took place and the reclamation of land that has been done. The ploughing capacity of the land can also be worked out, with the knowledge of area measure. The area measure reveals the survey undertaken by the kings to the minutest fraction.

kuli- an area measurement ${ }^{i}$

From among area measurements $k u l i$ is the basic unit of area measure. It is one square rod. A square rod means an area measuring with one rod in length and

Area of a rectangle $=$ length X breadth square units.
$=45$ X 81 square $k \bar{o} l$
one rod in breadth, the same came to be called a kuli.

Area measurement for a rectangular plot land

The modern formula for calculating the area of a rectangle is length X breadth. This was vogue in $13^{\text {th }}$ century also. It is revealed from an inscription of Jaṭāvarman Sundara Pāṇ̣ya III dated in his $9^{\text {th }}$ regnal year (1311-12 A.D.), hailing from Śrīrangam temple. It states that 3645 kuli of temple land was made over towards sites for the formation of a colony. The measurement of the place is mentioned as
njd;tly; nfhy; ehw;gj;ije;Jf;F
fPo;nky; nfhy; vz;gj;njhd;dhy; Fop 3645...
.... Thenvatal kōl 45kku kīlmēl kōl 81nāl kuli 3645...i

It means that in the north-south direction (Thenvaṭal) it measures 45 kol and in the east-west direction ($k \bar{i} l m \bar{e} l$) it measures 81 $k \bar{o} l$, then the area is 3645 kuli (without considering the length of the $k \bar{o} l$).

$$
=3645 \text { square } k \bar{o} l
$$

We know that, 1 square $k \bar{o} l=1$ kuli
Therefore, 3645 square $k \bar{o} l=3645 \mathrm{kul} i$
The same can also be verified from another inscription at Uttaravedisvarā temple in Kuttālam dated in the reign period of Tribh. Rājēndra Chōla III in his $15^{\text {th }}$ regnal year (1260 A.D.) which is still earlier than the inscription mentioned above. It registers a sale of 2 adjacent

$$
\text { Area } \quad \begin{aligned}
& =\text { length } \times \text { breadth square units } \\
& =12 \times 14 \text { square } k \bar{o} l \\
& =168 \text { square } k \bar{l} l
\end{aligned}
$$

Also we know 1 square $k \bar{o} l=1$ kuli
168 square $k \bar{o} l=168$ kuli
It matches exactly the area mentioned in the inscription.

An inscription from Uttaramerūr, dated 923 A.D., which gives the extent of many plots, refers to a plot of 28 kuli as measuring 2 rods east west and 14 rods north south. ${ }^{\text {iv }}$ If then, one square rod makes a kuli; the extent of kuli will naturally vary according to the length of the particular rod used. For example a kuli by 16 -span rod will not be equal to a kuli by 12 - span rod.

$M \bar{a}$ - an area measūrment

In general, hundred kulis make one $m \bar{a}$. Number of kulis that made up a $m \bar{a}$ varies from king to king and from period to period. Though the above values are generalized, the evidences from the inscriptions are being tabulated below.

Length of the rod and number of kuli to 1 mā

S.No.	Length of the measuring $\operatorname{rod}(\mathrm{in} a d i$ units)	No of kuli to $1 \mathbf{m a}$	Place	Date (in A.D)
1	$N M^{* 1}$	$128{ }^{\text {v }}$	Vasishthēśvara temple, Tañjāvūr dt.	1012
2	$N M^{*}$	$100^{\text {vi }}$	Uttaravēdíśvara temple, Kuttālam, Tañjāvūr dt.	1020
3	$N M^{*}$	$100^{\text {vii }}$	Naṭarāja temple, Chidambaram, South Ārcot dt.	1070
4	$N M^{*}$	$128^{\text {viii }}$	Naṭarāja temple, Chidambaram.	1075
5	12	$729{ }^{\text {ix }}$	Kailāśanātha temple, Ālambākam,Trichy dt.	1084
6	16	$128^{\text {x }}$	Āpatsahāyēśvara temple,	1105

[^0]| | | | Ālangudi, Tañjāvūr dt. | |
| :---: | :---: | :---: | :---: | :---: |
| 7 | 12 | $100^{x i}$ | Mahālingaśvāmi temple Kumbakōṇam tk, Tañjāvūr dt. | 1122 |
| 8 | $N M^{*}$ | $100^{\text {xii }}$ | Umāmahēśvara temple, Tañjāvūr dt. | 1117 |
| 9 | $N M^{*}$ | $520^{\text {xiii }}$ | Vrishabhapurī́vara temple, South Ārcot dt. | 1175 |
| 10 | $N M^{*}$ | $24.19^{\text {xiv }}$ | Vēdāraṇyēśvara temple, Tañjā̄ūr dt. | 1177 |
| 11 | $N M^{*}$ | $100^{\text {xv }}$ | Amirataghastēśvara temple, Tirukkadaiyūr, Tañjāvūr dt | 1159 |
| 12 | $N M^{*}$ | $600^{\text {xvi }}$ | Brahmapurīśvara temple, Tirumayanam, Tañjāvūr dt | 1186 |
| 13 | $N M^{*}$ | $512^{\text {xvii }}$ | Agastēśvara temple, Tañjāvūr dt. | 1220 |
| 14 | 12 | $50^{\text {xviii }}$ | Parasurāmēśvara temple, North Ārcot, dt | 1220 |
| 15 | 9 (12 san) | $160^{\text {xix }}$ | Viraṭānsēśvara shrine, Kīlūr, South Ārcot dt. | 1243 |
| 16 | 16 | $512^{\text {xx }}$ | Trivikrama temple, South Ārcot, dt | 1252 |
| 17 | 12 | $100^{\text {xxi }}$ | Virattanēsvarā temple, South Ārcot dt. | 1267 |
| 18 | 18 | $256{ }^{\text {xxii }}$ | Nellaiyappar temple, Tirunelvēli dt. | $13^{\text {th }}$ cen |
| 19 | $N M^{*}$ | $100^{\text {xxiii }}$ | Nedungalanātha śvāmin temple, Trichy dt. | $14^{\text {th }}$ cen |
| 20 | NM* | $6^{\text {xxiv }}$ | Amritaghatēśvara temple, Tañjāvūr dt | |
| 21 | 12 | $522^{x x y}$ | Ruined Perumāḷ temple, Kadavampatti. | 1307 |
| 22 | 16 | $256{ }^{\text {xxvi }}$ | Pudukōț̣ai | 1253 |
| 23 | $N M^{*}$ | $256{ }^{\text {xxvii }}$ | Kailāśanātha temple, Sendamañglam, Tirunelvēli dt | $12^{\text {th }}$ cen |
| 24 | 16 | $256^{\text {xxviii }}$ | Siganāthaśvāmin temple, Kuḍumiyān̄ malai, Kulattūr tk. | 1271 |
| 25 | 16 | $256{ }^{\text {xix }}$ | Viraṭann̄ēśvara temple, kīlūr, South Ārcot dt. | 1018 |
| 26 | 18 | 522^{xxx} | Kalyāṇa prasannn̄ā Veñkaṭāchalapathi temple, Tiruvetpūr, Ālanguḍi tk. Pudukōțtai dt | 1252 |
| 27 | 18 | 512^{xxi} | Karṇēśwarar temple, Tirukōkarnam, Alanguḍi tk. | 1266 |

28	18	$256{ }^{\text {xxxii }}$	Ēśwaran temple, Perumanāḍu, Kuḷatūr tk. Pudukōttai dt	1230
29	$N M^{*}$	$150{ }^{\text {xxxiii }}$	Śivapurīśvara temple, Śivayam, Kuḷitalai tk, Trichy dt. Pudukōṭ̣ai dt	1200
30	9	$256^{\text {xxxiv }}$	Pudukōț̣ai	1217
31	24	$522^{x \times x v}$	Éśwaran Temple. Perumenāḍu, Kulatūr tk. Pudukōṭtai dt	1258
32	24	$256{ }^{\text {xxvi }}$	Tiruthoṇdīśvaram temple, Erode.	1504
33	Nilamalavu kōl	$100^{\text {xxxvii }}$	Amiritaghatéśvara temple, Tirukkadaiyūr, Tañjāvūr dt.	1159
34	$N M^{*}$	$100^{\text {xxxviii }}$	Uttamanāthaśvāmin temple. Kiranūr. Pudukōṭai dt	1310
35	Tirumaiyathu kōl	$256^{\text {xxxix }}$	Naganātha śvāmin temple, Peraiyūr, Tirumaiyam. Pudukōttai dt	1300
36	22	$256{ }^{\text {x1 }}$	Naganātha śvāmin temple, Peraiyūr, Tirumaiyam. Pudukōttai dt	1290
37	16	$256{ }^{\text {xli }}$	Varahnīśvarar temple, Olimañglam, Tirumiyam tk. Pudukōṭtai dt	1261

The above table gives us an idea about the nature of the measuring rod and the number of kuli that is made up into $1 m \bar{a}$. The length of the measuring rod from Kailāśanātha śvāmi temple, Ālambākam, in Trichy district gives an equivalent of 729 kuli for $1 m \bar{a}$ while in the case of Mahālingéśvara temple in Kumbakōnam taluk it gives $100 \mathrm{kul} i=1 \mathrm{~m} \bar{a}$. In the case of Viraṭannēśvara temple, the number of kuli did change making 160 kull for $1 m \bar{a}$. Sometimes for different rods the basic number of kuli did not change. This can be seen from the equivalence seen from 128 kuli that made up $1 m \bar{a}$ as in the Vasiśhthēśvara temple in Tañjāvūr district and Natarāja temple at Chidambaram. This enables us to infer that each area adopted a
basic linear measure. Perhaps in the fertile areas, the length of the measuring rod was reduced to increase the area of the land. The least unit of measure is 24.19 kuli that made up $1 m \bar{a}$. In this case the length of the measuring rod is not mentioned. This has been calculated from the total number of kulis and its equivalents given. This was endowed free from taxes fixed by Rājaniyōgam, näțtuvivattai (Vyavasthai), ūrvivattai etc., as Tirunadavilakkupuram by Pañganavāyudaiyan of Kiliyūr for burning a perpetual lamp to the deity Tirumaraikkāḍuḍaiyār in Umbalanāạu. Tirumaraikādu is the Tamilised form of Sānskrit word the Vēdāraṇyam. The land endowed comes to $1 \frac{1}{2}$ ve $\bar{l} i$ and $1 m \bar{a}$.

This has been arrived by calculating

$$
\begin{aligned}
11 / 2 \text { vell } i & =30 m \bar{a}+1 m \bar{a} \text { (given) } \\
& =31 m \bar{a} \\
750 \mathrm{ku} \underline{l} i & =31 \mathrm{~m} \bar{a} \text { (given) } \\
\text { Therefore, } 1 \mathrm{~m} \bar{a} \quad & =750 / 31 \mathrm{ku} \underline{l} i
\end{aligned}
$$

$$
=24.19 \text { kuli }
$$

The frequency table for the above data could be a follows.
Frequency table for no. of kuli to $1 m \bar{a}$

S.No.	No. of kuli to $1 m \bar{a}$	Frequency
1	24.19	1
2	50	1
3	100	9
4	128	3
5	150	1
6	160	1
7	256	11
8	512	3
9	520	1
10	522	3
11	600	1
12	729	1

Now, we find that 100 kuli making a $m \bar{a}$ and 256 kuli making a $m \bar{a}$ have the highest frequency. Hence these two values becomes our prime concern for further

Area of a kuli and a $m \bar{a}$ for different length of the rods

S.No.	Length of the rod	No. of kuli to $1 m \bar{a}$ \bar{a}	Area of 1 kuli i (in sq. $a d ̣ i$)	Area of $m \bar{a}$ (in sq. $a d ̣ i$)
1	12	100	144	14400
2	12	256	144	36864
3	16	256	256	65536
4	18	256	324	82944
5	24	256	576	147456
6	32	256	1024	262144

We can find the range the area of $m \bar{a}$ variying from 14,400 sq. aḍi to $2,62,144$ sq. aḍi. Also, we could find that the variation in the area of a $m \bar{a}$ is wider. It means that the area measure depends largely on the linear measure that is the length of the rod and number of kulis constituting a $m \bar{a}$. Therefore, area measure
is a dependent variable of linear measure. It is also directly propotional to the linear measure. The area increases as the length of the rod increases. The bar diagram below gives an idea about the relationship between kuli and $m \bar{a}$ for different length of the measuring rod.

From the above discussion and the bar diagram we find that 100 and 256 kulis making a $m \bar{a}$ need to be addressed to. Also, we can infer that 256 kuli making a $m \bar{a}$ is found throughout the country. But we could also find that 100 kuli making a $m \bar{a}$ using 12 adi rod is found in Chōla country at large. In otherwords this was in practise in the areas which are fertile and also in the areas irrigated by river Kāveri. We could find that 256 kuli making a $m \bar{a}$ is being practised mainly in the dry areas like Pudukōttai, South Ārcot, Erode districts. It means that the availability of water, fertility of the soil, rainfall etc., contributes to the assesment of the value of the land. It is also noteworthy that 100 which is square of 10 and 256 which is square of 16 plays a significant role in the Tamil mathematics. This implies that the decimal and hexadecimal system was found to be vogue many centuries ago.

Calculation of area of $\boldsymbol{m} \overline{\boldsymbol{a}}$

After arriving at the conclusion that 100 kuli makes a $m \bar{a}$ and the length of the rod being 12 adi , the area of one $m \bar{a}$ is (12 X 12) X 100 sq. aḍi ie., 14,400 sq. aḍi. We shall suggest a method of measuring
the land whose area is 14,400 sq. adi using 12 adi scale. The various combinations of factors of 14400 are considered.
12 adi rod can be used for measuring both length and the breadth of the above said rectangle. It needs to be measured 10 times on both the ways. It is to be noted that this process may not always result in squares but it may result in rectangles as given below also.

12 adi rod can be used for measuring both length and the breadth of the above said rectangle. It takes 20 times to measure the length and 5 times to measure the breadth. The other possible combinations of (L, B) would be $(600,24),(160,90)$, $(225,64)$, $(180,80),(12,1200)$ for which either 12 aḍi rod or 16 aḍi rod can be used to measure. There are also combinations of rectangles which cannot be measured using any of the standard rod used for measuring the length and breadth. Those combinations are as follows: $(360,40)$, $(480,30),(720,20),(1440,10),(320,45)$.

Similarly, the same area of $1 m \bar{a}$ can be measured using 16 sān kōl. The conversion is as follows,
(12 X12) X 100 sq.adi $=14400$ sq. $a d ̣ i$

$$
\begin{aligned}
& =14400 \mathrm{X}(4 / 3)^{2} \text { sq. } s \bar{a} n \\
& =25600 \text { sq. sān. } \\
& =(16 \mathrm{X} 16) \mathrm{X} 100 \text { sq. } s \bar{a} n
\end{aligned}
$$

The other possible combinations of (L,B) would be $(320,80),(1600,16)$, (800 , 32), (128, 200), (256, 100). These rectangles can be measured using16 sān rod. The prime factorization of this The area of 256 kuli using 12 adi rod = (12 X12) X 256 square aḍi

$$
\begin{aligned}
& =36864 \text { sq. adi } \\
& =(16 \mathrm{X} 16) \mathrm{X} 144 \text { sq.adi } \\
& =144 \text { kuli using } 16 \text { adi rod }
\end{aligned}
$$

Hence from the above we find 1). For measuring an area of 14,400 sq. adi either 12 adi rod or 16 sān rod can be used. The number of kuli that is 100 remains the same. 2). Also, the area obtained by measuring 256 kuli using 12 adi rod is equal to the area of 144 kuli measured using 16 aḍi rod.

Standaradisation and calculation of the breadth of a kuli

number also leads to some combination of rectangles which can be again measured using the standard rod ie., 16 sān kōl which is again 12 adi in length.
Next,

So inorder to measure a $m \bar{a}$ of 100 kuli using 12 adi rod one can measure 256 kull using 16 sān rod. At this stage we shall define the basic length (BL) of the rod as 12 aḍi or 16 sān. And the basic kuli (BK) as 100 kuli whose basic area (BM) is 14,400 sq. aḍi.

Now consider 160 kuli making a $m \bar{a}$. (Refer table 3.1 row 15.) Convertion to basic kuli and finding the breadth of a kuli is as follows.

$$
\begin{aligned}
\mathrm{L}=12 \text { sān }=9 \mathrm{adi}, \quad k u \underline{l} i & / m \bar{a}(\mathrm{KM})=160 \quad \mathrm{BK}=100 \text { sq. } a d i, \quad \mathrm{BL}=12 \mathrm{adi} \\
\text { Breadth } & =\frac{B K X B L X B L}{L X K M} \text { units } \\
& =\frac{12 X 12 \times 100}{9 \times 160} a d i \\
& =\frac{14400}{1440} \mathrm{adi} \\
& =10 \mathrm{adi} \\
\text { Area of } 1 \mathrm{kuli} & =(9 \mathrm{X} \text { 10 }) \text { sq. } a d i \\
& =90 \text { sq. } a d i \\
\text { Area of } 160 \mathrm{kuli}(9 \mathrm{ad} i) & =(160 \text { X } 90) \text { sq. } a d i \\
& =14400 \text { sq. } a d i \\
& =\text { Area of } 100 \mathrm{BK} \\
& =\text { Area of } 1 \mathrm{BM}
\end{aligned}
$$

Hence, converting to BK we obtain a kuli is a rectangle of dimension (10 X 9) sq. adi. Now consider 512 kulu making a $m \bar{a}$. (Refer table 3.1 row 27). Convertion to basic kulu is as follows.

$$
\begin{aligned}
& \mathrm{L}=18 \text { aḍi } k u \underline{l} / m \bar{a}(\mathrm{KM})=512 \quad \mathrm{BK}=100 \text { sq. } a d ̣ i, \mathrm{BL}=12 a d ̣ \\
& \text { Breadth }=\frac{B K X B L X B L}{L X K M} \text { units } \\
& =\frac{12 \times 12 \times 100}{18 \times 512} \mathrm{ad} i \\
& =\frac{14400}{9216} a \mathrm{~d} i \\
& =1.5625 a d i \\
& \text { Area of } 1 \text { kuli }=(18 X 1.5625) \text { sq. } a d ̣ i \\
& =28.125 \mathrm{sq} . a d i \\
& \text { Area of } 512 \text { kuli }(18 \text { aḍi })=(28.125 \mathrm{X} 512) \text { sq. } a d ̣ i \\
& =14400 \text { sq. } a d i
\end{aligned}
$$

$$
\begin{aligned}
& =\text { Area of } 100 \mathrm{BK} \\
& =\text { Area of } 1 \mathrm{BM}
\end{aligned}
$$

Hence, converting to BK we obtain a kuli a rectangle with dimension (18 X 1.5625) sq. adi.
Or (24 X 2.08) sq. sān.
Now, consider 256 kuli making a $m \bar{a}$. (Refer table 3.1 row 28). Convertion to basic kuli is as follows.

$$
\begin{gathered}
\mathrm{L}=18 \text { aḍi, kuli/m } \bar{a}(\mathrm{KM})=256 \quad \mathrm{BK}=100 \quad \mathrm{BL}=12 \\
\text { Breadth }=\frac{B K X B L X B L}{L X K M} \text { units } \\
=\frac{12 \times 12 \times 100}{18 \times 256} \mathrm{adi} \\
=\frac{14400}{4608} \mathrm{adi} \\
=3.125 \mathrm{adi} \\
\text { Area of } 1 \mathrm{kul} i=(18 \times 3.125) \text { sq. } \mathrm{adi} \\
=56.25 \text { sq. } a d i
\end{gathered}
$$

Area of $256 k u \underline{i} i(18 a d ̣ i)=(56.25 \times 256) ~ s q . ~ a d i ~ i$
$=14400$ sq. $a d i$
= Area of 100 BK
$=$ Area of 1 BM
Hence, converting to BK we obtain a kuli is a rectangle of dimension (18 X 3.125) sq. adi or (24 X 4.1666) sq. sān.
Here the area of 256 kuli $=(12$ X 12) sq. aḍi X 256 kuli.
$\mathrm{L}=12 \mathrm{ad} i \mathrm{i}$, kuli/ $m \bar{a}(\mathrm{KM})=256 \quad \mathrm{BK}=100 \mathrm{sq} a d i \quad \mathrm{BL}=12 \mathrm{adi}$
Breadth $=\frac{B K X B L X B L}{L X K M}$ units
$=\frac{12 \times 12 \times 100}{12 \times 256} \mathrm{a} d i$
$=4.6875 \mathrm{adi}$
Area of 1 kuli $i=(12 \mathrm{X} 4.6875)$ sq. $a d i$
$=56.25 \mathrm{sq} . a d i$
Area of 256 kulu $i(12 a d ̣ i)=(56.25 \times 256) ~ s q . ~ a d i ~ i$
$=14400 \mathrm{sq} \cdot a d i$
= Area of 100 BK
= Area of 1 BM
The following diagram shows that 100 kuli whose area is 14400 sq. addi measured using 12 aḍi rod.

16 sān scale. Here the area of 256 kuli $=(16 \mathrm{X} 16)$ sq. aḍi X 256 kulı i

160 sān

160 sān	sān
1 mā $=100 \mathrm{ku} \underline{\mathrm{a}} \mathrm{i}$	
160 sān	
120 sān	

The same area is measured by rods of different length for the length and the breadth. Hence, the area of a $m \bar{a}$ can be interepreted as 100 kuli using 12 aḍi rod is equal to 100 kuld i using 16 sān rod.

The following table is obtained while standardizing the breadth by assuming the following values of BK, BL.
Breadth1: $\mathrm{BK}=100$; $\mathrm{BL}=12$;
Breadth2: $\mathrm{BK}=100 ; \mathrm{BL}=16$
Breadth3: $\mathrm{BK}=256$; $\mathrm{BL}=12$;
Breadth4: $\mathrm{BK}=256$; $\mathrm{BL}=16$
Breadths for different length of the rod and the corresponding No. of kuli to a ma

No. of kuli i	Length $(a d i)$	Breadth1 $(a d i)$	Breadth2 $(a d i)$	Breadth3(adi)	Breadth4(adi)
100	12	12	16	30.72	54.61333
256	12	4.6875	6.25	12	21.33333
729	12	1.64609053	2.194787	4.213992	7.491541
50	12	24	32	61.44	109.2267
522	12	2.29885057	3.065134	5.885057	10.46232
256	16	3.5156255	6.25	9	16
128	16	7.03125	12.5	18	32
512	16	1.7578125	3.125	4.5	8
256	18	3.125	6.25	8	14.22222
522	18	1.53256705	3.065134	3.923372	6.974883
512	18	1.5625	3.125	4	7.111111
256	22	2.55681818	6.25	6.545455	11.63636
256	24	2.34375	6.25	6	10.66667

522	24	1.14942529	3.065134	2.942529	5.231162
256	32	1.7578125	6.25	4.5	8
160	9	10	10	25.6	45.51111
160	12	7.5	10	19.2	34.13333

The fractions of the breadth can be measured by multiplying it with suitable numbers in order to measure a $m \bar{a}$. For example,
Consider the kuli i with length $=12$, breadth $=1.64$, No. of $k u \underline{l} i=729$
To measure 729 kuli (ie., a $m \bar{a}$), one has to break up 729 kuli as 7 hundreds 30 tens
$(12 \times 1.64) \times 729=(12 \times 16.4) \times 27 \times 27$

$$
\begin{aligned}
& =(12 \text { X 1195.56) } \\
& =(12 \times 1) X(12 \times 99.63) \\
& =(12 \times 1) X(12 \times 100) \mathrm{app} .
\end{aligned}
$$

Therefore, measuring 1 time the length and 100 times the breadth using 12 aḍi rod gives the result. Similarly, other rectangular kulis can be measured.
Next, let us consider 18 as 24 san. Hence,
Area of 512 kulli using 18 aḍi rod $=(8$ X 8 X 8) X 24 X24 sq. san

$$
\begin{aligned}
& \text { Breadth of } 1 \text { kuli }=\frac{8 \times 8 \times 8 \times 3}{8 \times 3 \times 4} \text { san } \\
& =16 \mathrm{san}
\end{aligned}
$$

Next, let us consider 729 kuli as 24 adi. Hence, Area of 729 kuli using 12 aḍi rod $=(9$ X 9 X 9) X 12 X 12 sq. san

$$
\begin{aligned}
\text { Breadth of } 1 \text { kuli } & =\frac{9 \times 9 \times 9 \times 4}{12 \times 3} \text { san } \\
& =81 \operatorname{san}
\end{aligned}
$$

From the above table, we also find that in every row there is atleast one value of the breadth which is a whole number. This particular length and breadth can be used as the dimension of one kuli and other standardizations can be neglected. For example, consider the second row, number of kuli is 256 , the length and the breadth3 is 12 adti .

Also, a kuli kōl which is in the shape of the wedge can be employed to measure the kuli directly. It is enough to
measure the diagonal using kuli kōl and thereafter the area of the land can be calculated.

Conclusion: Thus we find that kuli and ma play a major role in the calculation of veli. There seems to be different number of kuli and ma making a veli. There is variations in this number in different period of time and during different parts of the country. This depends on the nature of the land whether it is or wet.

REFERENCES

[^1]${ }^{\text {vi }}$ Ibid., Vol.XXIII, No. 487
vii Ibid., Vol.XXVIII,No. 135
${ }^{\text {viii } I b i d ., ~ V o l . ~ I V, ~ N o . ~} 226$
${ }^{\text {ix }}$ Ibid., Vol. XXVI, No. 776
${ }^{x}$ lbid., Vol.VI, No. 440
${ }^{\text {xi }}$ Ibid., Vol. V, No. 702
${ }^{\text {xii }}$ Ibid., Vol.XXVI, No. 700
xiii Ibid., Vol.XVII, No. 244
${ }^{\text {xiv }}$ Ibid., Vol.XVII, No. 540
${ }^{\text {xv SII., Vol.22, PART I, No. } 41}$
xvilbid., Vol.XXII, PART I, No. 63
xvil lbid., Vol.VIII, No. 204
xviii I bid., Vol.VIII, No. 512
${ }^{\text {xix }}$ Ibid., Vol.VII, No. 863
${ }^{\text {xx }}$ Ibid., Vol.VII, No. 947
${ }^{\text {xxi }}$ Ibid., Vol.VIII, No. 316
${ }^{x x i i}$ Ibid., Vol.V, No. 411
xxiii Ibid., Vol.XXVI, No. 716
${ }^{\text {xxiv }}$ Ibid.,Vol..XXII, PART I, No. 18
${ }^{\mathrm{xxv}}$ Inscriptions of Pudukottai State, No. 544
${ }^{x x v i}$ Inscriptions of Pudukottai State, No. 345
${ }^{\text {xxvii }}$ SII.,, Vol. XIV, No. 232
xxviii Inscriptions of Pudukottai State, No. 383
${ }^{\text {xxix }}$ SII.,, Vol.VII, No. 889
${ }^{\text {xxx }}$ Inscriptions of Pudukottai State, No. 475
${ }^{\text {xxxi }}$ Inscriptionsof Pudukottai State, No. 590
xxxii Inscriptionsof Pudukottai State, No. 525
xxxiii SII.,, Vol.XXVIII, No. 45
${ }^{\text {xxxiv }}$ Inscriptions of Pudukottai State, No. 175
${ }^{\text {xxxv }}$ Inscriptions of Pudukottai State, No. 359
xxxvi Erode district inscriptions, 1009/2003
xxxviisII.,, Vol.XXII, PART I, No. 41
xxxviii Inscriptions of Pudukottai State, No. 546
${ }^{x x x i x}$ Insriptions of Pudukottai State, No. 412
${ }^{x 1}$ Inscriptions of Pudukottai State, No. 403
${ }^{\text {xli }}$ Inscriptions of Pudukottai State, No. 349

[^0]: ${ }^{1} \mathrm{NM}^{*}$ - means that the length of the rod is not mentioned in the inscription.

[^1]: ${ }^{i}$ Paper of Suburayalu titled "Land measurements in medieval Tamilnāḍu", in felicitation volume- Kaveri
 ${ }^{\text {ii }}$ SII.,, Vol. XXIV, No. 222
 iii ${ }^{\text {iidid., Vol. XXIII, No. } 495}$
 ${ }^{\text {iv }}$ SIII.,, Vol.VI, No. 292
 ${ }^{\mathrm{V}}$ Ibid., Vol. V, No. 1408

